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Isentropic motions of a perfect fluid are studied by using comoving coordinates 
in the framework of general relativity without assuming any symmetry in the line 
element and a linearized solution is obtained by dealing with the Cauchy 
problem. 

1. INTRODUCTION 

In view of the fact that the equations of general relativity are highly 
nonlinear, problems of relativistic astrophysics and cosmology are in general 
solved by assuming various symmetries in the line element. But there occur 
some important problems where one cannot assume any symmetry in the 
line element and consequently it poses an uphill task to solve such prob- 
lems. With a view to get rid of this difficulty one may, of course, attack the 
problem by dealing with the Cauchy problem in the framework of general 
relativity and indeed some attempts have been made in this direction. 
Pachner (1968, 1971), Bera and Datta (1974, 1975), Datta (1975-76, 1976-77), 
and Basu et al. (to be published) have studied the isentropic motions of a 
perfect fluid by using comoving coordinates in the framework of general 
relativity without assuming any symmetry in the line element. The solutions 
obtained by these authors by dealing with the Cauchy problem for a perfect 
fluid correspond to linear approximation. 

In the present paper we have, however, pursued the study further. A 
new solution is obtained on the assumption that all thermodynamic processes 
are adiabatic and that only mechanical energy may be released in the 
process. The solution arrived at is distinct from Pachner's (1971) and is 
more general than that of Bera and Datta (1974). 
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2. NOTATION 

The Greek indices run from 1 to 4, Latin indices from 1 to 3. 
Summation convention is followed throughout. The signature of the metr ic  
is +2.  A system of units is used in which the velocity of light and t h e  
Newtonian constant of gravitation are each equal to unity. A c o m m a  
followed by an index denotes ordinary partial differentiation, while a 
semicolon followed by an index denotes covariant derivative. We define g as  
det g~,, p the proper pressure, p the proper rest mass density, and e the  
proper internal energy per unit mass. The Krrnecker delta function is 
defined by 

~ = 1  or 0 a s~ t=v  o r / ~ p  

The timelike 4-velocity is denoted by u ~, where 

d x  v 
UZ' ~ 

ds 

3. BASIC EQUATIONS OF THE PROBLEM 

We consider the general form of the metric to be 

ds2 = g~, dx~' dx" (I) 

where the &,,'s are functions of x I, x 2, x 3, and x 4. We introduce a system of 
comoving reference frames defined by 

u'=81 ( i = 1 , 2 , 3 )  (2)  

The timclike 4-velocity u" satisfies the identities 

u'u,=-I (3) 

which gives in view of (2) 

/,/4 = (__ g44)--I/2 

The conservation law of the baryon number 

(pu');, = 0  

(4) 

(5) 
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gives in the case on integration with respect to time 

p = ( g a z / g / / 2 f ( x  ') 
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tion 

where f ( x  i) is a function of space coordinates and may be determined by 
the initial distribution of matter. The equation (6) is called the equation of 
continuity, which connects the proper rest mass density, a measurable 
physical quantity with the components of the metric tensor. 

The energy-momentum tensor T~ for a perfect fluid is defined by 

and 

r ;  = + (7) 

where ~, the enthalpy density, is given by 

# = I + ~ + p / p  (9) 

In phenomenological thermodynamics the enthalpy satisfies the rela- 

d r :  dp/p + rdS (lO) 

where the function S is defined as specific entropy and T, the temperature. 
It is clear from (10) that of the three state functions/z, p, and p, only two 
can he independent. 

In view of (3), (5), and (7)-(10), the equations of motion for a perfect 
fluid, 

r ; ~ : 0  (11) 

reduce to (Datta, 1975-76, 1976-77; Krasifiski, 1973, 1977; Plebafiski, 1970) 

[ 0 , u x ) . ~  - (~,u~),x] u ~ -  r S x = O  (12)  

For isentropic motions of a perfect fluid we have 

S x =0  (13) 

Thus in view of (2) and (13), equations (12) assume the form 

(/tUx).4 - (/~u4),x =0  (14) 

(6) 
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and the enthalpy relation (10) reduces to 

at~ = dp / p 

Thus for isentropic motions one has from (9) and (15) 

de 
de p/p2 

(15) 

(16) 

This equation also follows from the law of conservation of energy 

~4~ ~ =0 (17) 

by virtue of the equation of continuity (5) in the system of comoving 
reference frames defined by (2). The equation of continuity (5) is postulated 
in this case independently of equations (11). Equation (16) expresses the 
conservation of energy in an ideal fluid at a constant entropy. It is evident 
that of the four equations (14) the three equations 

=0 (18) 

are independent and the fourth one is satisfied automatically. Accordingly, 
the four conservation laws of energy-momentum (11) are replaced by the 
four equations (16) and (18). 

We consider the case where all thermodynamical processes are adia- 
batic and assume 

e + p / / p  = k(x 4) (19) 

where k(x 4) is a function of space coordinates. As will be evident from our 
later discussion this assumption seems to be interesting and useful from the 
point of view of mathematical simplicity. 

The conservation law of energy (16) implies that 

P=P(p)  

e = e(p) (20a) 

or in other words 

,=e(p) (20b) 
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The field equations 

__! R ~ -~ R &,.  = - 81r T~. (21) 

are equivalent, according to Synge (Synge, I966; Lichnerowicz, 1955), to six 
independent Einstein field equations 

R i j  = - 8~r( Tij - ½ Tgi j  ) (22) 

where 

T = g ~ T ~ B  (23) 

and four laws of conservation of energy-momentum given by (16) and (18). 
Furthermore, one has to satisfy four consistency conditions 

R, , ,  - -  ½Rg4,, = - 87rT4,,, g44 @ 0  (24) 

on the hypersurface x 4 =0. 
Now the behavior of isentropic motions of a perfect fluid is described 

by the nine equations (I 8) and (22) together with the consistency conditions 
(24). 

Next, we make a plausible assumption 

g44 = l/IX 2 (25) 

Then (4) and (6), respectively, reduce with the help of (25) to 

u 4 =IX (26) 

O = f ( x  i ) / I  x ( - g),/2 (27) 

Now we have nine equations (18) and (22) to determine nine metric 
tensor components g~ and gi4 together with consistency conditions (24). 

In view of (2), (25), and (26), equations (18) yield on integration with 
respect to time 

gi, = C , ( x J ) / i x  2 (28) 

where C i ( x  y)  are three functions of space coordinates and may be de- 
termined by the initial conditions. 
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Again in view of (2), (25), and (26) the covariant components up are  
given by 

up = C~//~ (29) 

with 

c 4  = - 1 ( 3 0 )  

The functions C. which represent the covariant components of a 
4-vector are known as Coriolis potentials (Tauber and Weinberg, 196 1), 
which are connected with the metric tensor components g.4 by means of 
equations (28) and (29). A comoving reference system remains comoving 
if one applies the coordinate transformations of the type (Tauber and  
Weinberg, 1961) 

$i=y'(x' ,x2,  x3), ~4=x4  (31) 

If we assume that the vector field u i and the proper rest mass density p 
vary sufficiently smoothly on the hypersurface x 4 = 0, we obtain by means 
of the field equations (Bera and Datta, 1974, 1975; Pachner, 1971). 

C, = C2 =0, C3=C3(x2. x3), C 4 = - 1  (32) 

and by using the following coordinate transformations as permitted by (31) 

.~3 = ~3(X3), ~ 4 = X 4  ( 3 3 )  

Now in the system where the Coriolis potentials C. are given by (32) 
the equations (29) and (30) give 

U l = g l 4 = 0 ,  U2 = g24=0, 

U3 = ~g34 "= C 3 / ~ ,  u4 = ~g44 ~-- - -  l / ~  (34) 

The contravariant angular velocity vector is given by the formula 
(G6del, 1949; Taub, 1956) 

f~P = ½(-- g)-'/2e~"#'tu,,u#,v (35) 
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where the contravariant skew-symmetric tensor density e ~/~Y is defined by 

e ~ v  = l, -- l, 0 (36) 

of three-dimensional vector notations, the equations (35) In terms 
reduce to 

~'~v = ( a ,  a4) 

where the three-dimensional vector fl is given, in our case, by 

and 

a = ½( -  g ) - , / 2  curl C//~ 2 

(37) 

(38) 

~']4 ~---0 (39) 

C being a three-dimensional vector with components C i. Now f~ has only 
one nonvanishing component 

f l l  = ½(_  g ) - ' /2C3 .2 / i ,  t2 ' f]2 =~3 =0 (40) 

and has the direction of the x 1 axis everywhere. Furthermore, it is evident 
from (32) and (35) that 

~C~ =0 (41) 

and 

ft"u, = 0  (42) 

These express that the Coriolis potential field and the velocity field are each 
orthogonal to the angular velocity field. The tensor of vorticity LOik defined 
by 

%k = ½(C,.k - -Ck. , )  (43) 

is constant along the vortex filament and in time. This is the relativistic 
generalization of the classical law of circulation (Lichnerowicz, 1955; Tauber 
and Weinberg, 1961). 

For irrotational motion 

curl c = 0 (44) 
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which reduces in view of (40) to 

c3 = C( x ) (45) 

C being a function of x 3 alone. Hence for motion to be irrotational C 3 mus t  
necessarily be independent of x 2. The condition is also sufficient. On the  
other hand, the rotational motion necessitates the dependence of C 3 on .x 2. 
We note in passing that in the case of irrotational motion all the C~s may be 
reduced to zero. Hence for irrotational motion one can, without any loss of 
generality, introduce the coordinates defined by 

gi4 =0 (46) 

4. THE CAUCHY PROBLEM 

Now we have six field equations (22) together with four consistency 
conditions (24) to determine six metric tensor components g~k" In default of 
an exact solution of (22) we venture to obtain solution in powers of 
time coordinate x 4 and in terms of the Cauchy data on a given 3-space S 
(Foufes-Bruhat, 1948, 1950, 1952, 1955, 1962; Hadamard, 1932; 
Lichnerowicz, 1955; Pham Mau Quan, 1953, 1955; Synge, 1960). Without  
any loss of generality we choose a coordinate system in which the hyper- 
surface S, oriented in space, can be given by x 4=  0. Consequently the 
normal to the hypersurface S must be oriented in time. As one can obtain 
the derivatives gik.j on S directly, it is sufficient to assign as the Cauchy 
data on S the values of the twelve quantities 

ga,. gik,4 (47) 

chosen subject to the conditions (24). Thus our problem reduces to solve 
equations (22) subject to the constraints (24). 

We confine our investigation to the irrotational motion of a perfect 
fluid for which one can make 

c,--o (48) 

Then by virtue of (2), (4), (7), (29), (30), and (48), equations (22) may be 
expressed as 

__ • I ~  
2 g,k.4 

+ gm'g,m,4g~n,4 + 87r(~ - -2p)g ik /~  2 (49) 
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where/~ik is the intrinsic Ricci tensor of the 3-space x 4 =0  and 

(50) g gi~,4 

Equations (49) explicitly determine the values of gik,44 o n  S in terms of the 
Cauchy data (47). It is evident from (49) that the second time derivatives 
g;k,44 do not contain the terms g~4,44 which are needed to determine the time 
evolution of the metric from the Cauchy data on S. Consequently we have a 
problem of underdeterrnination in the field equations. As pointed out by 
Adler et al. (1965) one can get rid of this difficulty by choosing 

g.4,44 = 0  on x 4 = 0  (51) 

In the case under investigation the condition (51) gives in view of (25) 

# = ( a x  4 + b )  - l / 2 = k + l  (52) 

where a and b are arbitrary constants. 
Thus provided the Cauchy data are chosen subject to the compatibility 

conditions (24), the solution in the neighborhood of x 4 =0  may be given by 

g,~ = ( g,k )0 + x 4 (  gik ,4 )0 "~- 1 ( X 4 )2( gtk ,44 )0 "q- " " " (53) 

Finally we have to consider the compatibility conditions (24). It is well 
known that once the compatibility conditions (24) are satisfied on x 4 =0,  
they will be automatically satisfied for all time. Equations (24) may thus be 
interpreted as integrals of the differential system (22). By setting 

~bik = gik,4, for x 4 =0 (54) 

one may write the compatibility conditions (24) as 

k k G , , -  - 0  (55) 

and 

/~_  a k 1 3 b + 4  ~ j  
2b 2 4'k - ~ ( ~ k [ )  2 + ~ 4 ' j  4',- 

b - 1  ~+ 16~rp(1 + Q 
b b = 0  (56) 
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where/~ is the intrinsic curvature invariant of the hypersurface x 4 : 0 ,  the 
double bars indicate covariant derivative with respect to Christoffel symbols  

Fjk : gim[ j k ,  m ] (57)  

and ~ is given by 

g'kg, k,4, ( 5 8 )  

Now the four equations (55) and (56) are to be satisfied by twelve 
quantities g~k and ~k~k. One may obtain a solution corresponding to a l inear  
approximation by setting (Synge, 1966) 

gik = 8ik + "gik (59)  

and treating "/gk and ~ik as small. Then the equations (55) and (56) reduce to 

- = 0 ( 6 0 )  

1 6 7 r p ( l + , ) / b  = 0  (61)  
A'~ii - ~/~k, ~k + b 

where A is the Euclidean Laplace operator. 
One may obtain the solution of these linearized equations (60) and (61) 

as  

and 

~kik = 0 (152) 

where dv = dx ~ dx 2 dx 3 and r is the spatial distance (in Euclidean metric) of 
dv from the point at which ~'/k are computed and the integration is over the 
hypersurface x 4 -- 0. 

Now the equations (62) imply that the term containing x 4 in the series 
(53) vanishes and the series contains only even powers of x 4. If one takes 

k =const,  g44 = - 1 (64)  

one may arrive at the solution obtained by Bera and Datta (1974, 1975). 
Obviously the case (64) leads to time-symmetric solutions (Araki, 1959, 

23 ik /b  
f [ p ( 1  + c ) / r ]  dv, (63)  "Yik-- T 
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Brill, 1959a, 1959b; Four6s-Bruhat, 1955; Misner et al., 1973; Webe r  and 
Wheeler, 1957). 

In an incoherent fluid or dust cloud defined by 

p = 0  (65) 

the stream lines are geodesics (Synge, 1966). 
Pachner (1968, 1971) has computed the metric tensor components  gik 

by reducing the system of Einstein partial differential equations to an 
equivalent system of simultaneous ordinary differential equations in which 
the numerical integration can be carried out, whereas our solution for gik 

corresponds to a linear approximation. The solution thus obtained here is 
distinct from Pachner's. The solution obtained by Beta and D a t t a  (1974, 
1975) is a special case of the solution presented here. Basu et al. (to be 
published) have, of late, investigated the isentropic motions of a perfect 
fluid by using comoving coordinates, and a solution corresponding to linear 
approximation has been obtained for the case 

/~ = /~(x  ~ ) (66) 

where/~(x ~) is a function of x 1, x 2, x 3, and x 4. We propose to pursue the 
study in our next paper, a more general case. 
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